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A computational method is proposed for solving magnetohydro- 
dynamical equilibrium problems with prescribed flux and mass within 
the magnetic surfaces that foliate the plasma. Such problems arise in 
tokamak modeling, for instance, where they determine either equilibria 
with given adiabatic profiles or slowly evolving quasi-equilibria 
governed by the Grad-Hogan equations. The classical variational 
principles of Kruskal and Kulsrud and Woltjer, which express these 
problems in terms of energy minimization subject to infinite families of 
nonlinear, nonlocal constraints, are taken as the basis for a direct 
method of solution. A natural discretization of the classical constraint 
families is devised, and an iterative algorithm is developed to solve 
the resulting optimization problems. A convergence theory for the 
algorithm is established, and an effective numerical implementation of 
the method is presented for flux-conserving tokamak equilibria. Some 
computed examples involving plasma heating and adiabatic compres- 
sion are described. 0 1993 Academic Press. Inc. 

1. INTRODUCTION 

At present the tokamak concept of magnetic confinement 
is widely believed to offer the most promising prospect for 
controlled thermonuclear fusion. In a tokamak, axisym- 
metric plasma configurations are stably confined in a 
toroidal vacuum chamber by means of a strong external 
magnetic field and an induced plasma current. These 
configurations are not in ideal equilibrium during actual 
physical experiments, however, because of the presence of 
heating sources, the variation of applied fields, and the 
effects of resistivity. Instead, they slowly (or adiabatically) 
evolve in time as quasi-equilibrium processes. The macro- 
scopic properties of such configurations are described by 
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magnetohydrodynamics (MHD), which models the plasma 
as a single, conducting fluid surrounded by a vacuum, self- 
consistently interacting with the external field. Nevertheless, 
the direct analysis and computation of these processes based 
on the full system of MHD equations is not feasible, since 
the time scales for different MHD phenomena range over 
several orders of magnitude [16]. For this reason, a 
reduced system of governing equations has been introduced 
by Grad and Hogan [ 121, which, by neglecting the inertial 
terms in the force balance equation, describes the plasma 
evolution as a sequence of equilibrium configurations with 
slowly varying parameters. The solution of these slow 
(or adiabatic) evolution problems in MHD therefore 
constitutes an important aspect of the modeling of plasma 
behavior in a magnetic confinement device such as a 
tokamak. 

A procedure for solving the reduced system of equations 
describing slow evolution has been proposed by Grad and 
his collaborators [l&13] and has subsequently been 
developed by others [2-4, 17-23,261. The basis of this 
approach is the so-called “generalized differential equation” 
(GDE), which arises naturally when magnetic surface 
averages of the instantaneous equilibrium equations are 
invoked to retrieve the parameters that determine the equi- 
librium (the Grad-Shafranov profiles for poloidal current 
and plasma pressure) from the parameters that determine 
the evolution (the toroidal flux and mass per unit poloidal 
flux). This approach furnishes the standard formulation of 
the so-called flux-conserving equilibrium problem for a 
tokamak. The unusual structure of the resulting GDE, 
however, makes it hard to treat analytically and numeri- 
cally. Consequently, an adequate mathematical justification 
of the GDE theory has not been given, and a sufficiently 
flexible and reliable computational scheme based on the 
GDE formalism is not available. 

In the present paper we give an alternative theory of the 
slow evolution of axisymmetric plasma-vacuum systems, in 
which the instantaneous equilibrium conditions are 
formulated variationally. The framework for our theory is 
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supplied by the classical variational principle of Kruskal and 
Kulsrud [20], which is also the foundation of the important 
computational method of Bauer, Bentancourt, and 
Garabedian [ 11. This principle characterizes equilibrium 
configurations as minimizers of total energy subject to two 
infinite families of constraints that determine the flux and 
mass within the magnetic surfaces in the plasma. (More 
correctly, the “mass” also involves the plasma entropy, and 
so it is actually a measure of the plasma pressure.) These 
constraints, being derived from the conserved quantities 
associated with ideal MHD evolution, provide the natural 
parametrization of the instantaneous equilibrium solutions 
occurring in slow evolution problems. For a toroidal device 
such as a tokamak, whose equilibrium configurations are 
assumed to be symmetric with respect to the toroidal angle, 
a simpler variational principle due to Woltjer [27, 283 
applies. Under axisymmetry, the magnetic surfaces can be 
identified with the level surfaces of a poloidal flux function, 
and the constraints can be expressed conveniently as 
definite integrals. It is then possible to relax the two infinite 
families of constraints into two corresponding finite 
families, which essentially impose conservation of flux and 
mass in a volume-averaged sense. With such a discretiza- 
tion/interpolation of the classical constraints, the instan- 
taneous equilibrium problem is reduced to a constrained 
minimization problem of a standard form, whose equi- 
librium equations are obtained by the usual Lagrange 
multiplier rule. These equations are equivalent to a 
Grad-Shafranov equation [7,24] (for the poloidal flux 
function) with profile functions (for the poloidal current 
and plasma pressure) that are determined by the multipliers 
in response to the constraints. This direct treatment of the 
constraints is fundamental to our formulation and dis- 
tinguishes it from the standard variational formulation of 
the flux-conserving equilibrium problem [ 11, which 
imposes the classical constraints by means of a flux- 
coordinate representation of the magnetic configurations. 

Our multiconstrained variational formulation of the 
equilibrium problem naturally suggests a numerical method 
based on the principles of optimization theory. Indeed, the 
main goal of this paper is to develop an iterative algorithm 
for solving the equilibrium problem that exploits its special 
variational structure. The algorithm that we give is simple 
and robust and enables us to compute equilibrium con- 
figurations with low or high /?, arbitrary external coil 
geometry, and general magnetic surface topology in a 
unified fashion. The present method is an extension of the 
formulation and algorithm that we developed earlier [6] 
for a mathematical prototype problem modeling two- 
dimensional, incompressible plasma configurations. 

In Section 2 we consider the full system of ideal MHD 
equations with distributed sources which, in appropriate 
dimensionless units, are small and vary slowly in time. By a 
routine expansion of the governing equations in terms of an 

appropriate small parameter, we obtain the reduced system 
of Grad-Hogan equations. We then express the axisym- 
metric equations of slow (or adiabatic) evolution in terms of 
scalar unknowns, getting conservation laws for flux and 
mass, along with the Grad-Shafranov force balance equa- 
tion. We also display the families of constraints associated 
with each magnetic surface in the form needed for our 
subsequent analysis. 

In Section 3 we construct the multiconstrained varia- 
tional problem (P,). Simply put, (P,) is the relaxed problem 
that results from averaging the constraints in the classical 
variational principle between a family of n magnetic sur- 
faces. By also imposing a constraint on the total (plasma 
plus vacuum) flux, (P,) includes the plasma-vacuum 
free-boundary in a natural manner. A solution of (P,) 
therefore satisfies both the equilibrium equations and the 
plasma-vacuum interface conditions exactly; its multipliers 
define the associated Grad-Shafranov profile functions in 
terms of a corresponding family of n basis functions of linite- 
element type. We interpret a quasi-equilibrium solution as a 
solution of (P,) whose constraint values evolve in slow time. 

We develop our iterative algorithm for solving (P,) in 
Sections 4 and 5. The construction of this algorithm, which 
applies to a class of constrained minimization problems, is 
based on a technique of linearization and convexilication of 
the given nonlinear and nonconvex constraints at each 
iteration. Similar although not identical constructions are 
used in finite-dimensional optimization [9,25]. For algo- 
rithms of this kind, convexity properties guarantee the con- 
vergence of the iterates from any initial guess. Moreover, the 
structure of the iterative step implies that the iterates can be 
generated by solving standard linear subproblems. These 
attributes of the algorithm guarantee that it is both robust 
and efficient. 

We devote Section 6 to a discussion of some computed 
results. Since our goal is not to simulate actual tokamak 
experiments, but rather to demonstrate the computational 
features of our general method, we choose some simple, 
generic cases as illustrations of its numerical implementa- 
tion. Specifically, we consider (1) flux-conserving equilibria 
with increasing /? due to plasma heating, and (2) adiabati- 
cally compressed equilibria in an external field produced by 
increasing currents in the toroidal coils. The same method 
applies to a great variety of quasi-equilibrium processes for 
plasma-vacuum systems, and is computationally effective 
over a wide range of conditions. 

For the sake of clarity in the exposition, we ignore plasma 
resistivity throughout our analysis. It is possible to modify 
the formulation and algorithm that we describe here in the 
case of adiabatic evolution due to small sources and slowly 
varying external fields to treat the case of diffusive evolution 
due to a small resistivity. However, since different physical 
issues arise in the latter case, we choose to omit any 
discussion of resistive effects in this paper. 
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2. SLOW EVOLUTION EQUATIONS 

We begin by recalling the full set of equations governing 
a plasma-vacuum system confined in a toroidal device such 
as a tokamak. Under the usual assumptions of ideal 
magnetohydrodynamics, the equations valid in the plasma 
region are 

DP 
E+pV4’= Q,,,, (2.1) 

(2.2) 

(2.3) 

aB 
dt-V~(VxB)=O (2.4) 

VxB=J, V-B=O; (2.5) 

and the equations valid in the vacuum region are 

VxB=& V.B=O. (2.6) 

Here, p, [, p, V, B, and J denote the mass density, entropy 
density (per unit volume), pressure, velocity, magnetic field, 
and current density, respectively. The notation D/Dt := 
d/at + V . V is used for the convective derivative. We sup- 
pose that in the plasma there are distributed sources of 
mass, entropy, and momentum production given by Q,,,, 
Q and F, respectively, and that in the vacuum there are 
exskrnal field coils carrying a given current density J. We 
assume here and throughout that all equations are 
expressed in nondimensional variables. The physical 
quantities representing magnetic field, current density, and 
plasma pressure are retrieved as l&B, (y,L,)-’ B,J, 
&‘Bip, respectively, in terms of a characteristic length 
L,, a characteristic field strength B,, and a magnetic 
permeability pO. 

In constrast to usual practice we use the entropy per unit 
volume 5 rather than the entropy per unit mass s = r/p. In 
this notation the equation of state for an ideal gas is 

p = &fPpY 7 (2.7) 

and the internal energy density is the convex function 
U(p, c) = e”“pY/(y - l), where y is the adiabatic index (ratio 
of specific heats). All of our subsequent development 
actually applies to the general case in which U(p, 5) is taken 
to be any smooth and strictly convex function, and the 
equation of state is derived from the thermodynamic 
relation p = p aU/ap + { aU/aC - U. However, we shall 
restrict our discussion to the familiar case (2.7) for the sake 
of definiteness. 

The above equations hold in a toroidal region D. On the 
fixed boundary aD, which is assumed to be a perfectly 
conducting shell, the normal component of B vanishes. On 
the free-boundary surface 9, the plasma-vacuum interface 
conditions hold; namely, 

p = 0, n . B = 0 on Y and n x B is continuous across Y, 

(2.8) 

where n is the unit normal on Y. The fixed and free 
boundaries are therefore magnetic surfaces at every 
instant of time and there are no surface currents on the free 
boundary. 

Let us suppose for the moment that the external sources 
of mass, entropy, and momentum do not exist and that the 
external current density does not vary in time. Then the 
above evolutionary problem has a class of static (V = 0) 
equilibrium (a/& = 0) solutions. In the plasma region these 
solutions satisfy the standard equilibrium equations 

JxB=Vp, VxB=J, V.B=O, (2.9) 

while in the vacuum region they satisfy (2.6); on the fixed 
and free boundaries they fulfill the conditions stated above. 
In equilibrium the density p and entropy [ do not have a 
precise meaning, since only the pressure p, which is the 
combination (2.7), enters in the governing equations (2.9) 
and hence can be determined. 

Now let us suppose that the external sources are small 
and vary slowly in time, and that the external currents vary 
slowly in time. Then it is possible to derive approximate 
equations describing the slow evolution of a plasma- 
vacuum system that is almost in equilibrium at every instant 
of time. In order to obtain these equations we introduce a 
dimensionless parameter E 6 1 and scale the unknowns as 

p=/?, [=r: p=fi, V=& B=B, 

where the caretted unknowns depend on the scaled 
variables 2 =x, t= ct. Such a scaling is based on the 
assumption that the given external sources and currents can 
be expressed in the form 

I 
QM = E&&, Et), Qs = &x, Et), 

F = &*fi(x, et), J = 3(x, Et). 

Upon substituting these expressions into the governing 
equations (2.1)-(2.6) and the associated fixed and free 
boundary conditions, and after dropping the carets, we find 
that all of those equations remain unchanged except for the 
force balance equation which assumes the form 

s*pg+Vp-JxB=c*F. (2.10) 
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Now formally neglecting the O(.s*) terms in (2.10), we there- 
fore conclude that the (adiabatically) slow evolution of the 
plasma-vacuum system caused by the presence of external 
sources and currents is governed by a system of reduced 
equations: the conservation laws (2.1) and (2.2), the equi- 
librium equations (2.9) in the plasma and (2.6) in the 
vacuum, and the (flux-freezing) induction equation (2.4). 
Moreover, since only the pressure p enters into the equi- 
librium force balance equation, this system can be further 
reduced by amalgamating the two conservation laws for p 
and c into 

Dp’ly 
-+p”yVV=Q, (2.11) 

where Q denotes a heating source density. Thus, we have 
derived the nondissipative Grad-Hogan equations [ 121. 

Henceforth we assume that the plasma-vacuum system 
is axisymmetric. The toroidal region D = {x = (r, 4, z) : 
(r, z) E 52, 0 < 4 < 27~) is then defined by its cross section 0 
in the usual cylindrical coordinates. The invariance of the 
system with respect to the toroidal angle 4 implies that the 
slow evolution equations can be replaced by a simpler system 
of equations. For the sake of simplicity, we shall assume that 
the velocity field is purely poloidal, V = (V,, 0, V,), 
this assumption being consistent with the absence of the 
inertial term DV4/Dt in the reduced equations. (It is 
straightforward to include toroidal flow in what follows 
without any conceptual changes, because the toroidal 
momentum behaves exactly like the toroidal magnetic flux.) 
The axisymmetric slow evolution equations govern the 
unknowns Y(r, z, t), f(r, z, t), and p(r, z, t), where the 
magnetic field and current density are written in terms of 
flux functions Y and f according to 

B=V!I’xV#+fV4 (2.12) 

J=VfxVd+(LY)VqS, (2.13) 

with 

In the plasma region these equations are 

Dp ‘ly 
~+p”VV=Q 

-r-*fVf+r-*(LY)VY=Vp, VfxVY=O (2.15) 

DY 
-= 
Dt 

0 (2.16) 

and in the vacuum region they are 

Vf =o, LY = r-l+. (2.18) 

Here, the vector equations are separated into their poloidal 
parts (perpendicular to Vq5) and their toroidal parts 
(parallel to Vq5). The equilibrium force balance equations 
(2.15) reduce to the familiar Grad-Shafranov equation 

LY=f(Y, t)f’(Y, t)+r*p’(Y, t), 

f =f(Y, t), p= P(Y, t), 
(2.19) 

where prime denotes differentiation with respect to Y. The 
unknown profile functions f (Y, t) and p( Y, t) are called 
“surface quantities,” being constant on the magnetic surfaces 
{Y=a}. 

By virtue of (2.16), each magnetic surface { Y = c} moves 
with the plasma flow V so that the poloidal flux e is 
conserved. Hence, under axisymmetry the fixed and free 
boundary conditions can be normalized as follows. The 
boundary condition on the shell is taken to be 

Y=O on asz, (2.20) 

while the plasma-vacuum interface conditions are expressed 
as 

p = 0, Y = o0 on 9, VY and f are continuous across ~7, 
(2.21 1 

for a flux constant co > 0 that determines the free-boundar: Y 
surface Y. If we make the sign convention that the tota 11 
plasma current is positive, then we can characterize the 
plasma region as the set { Y > co}. (It is possible to consider 
more physically realistic boundary conditions and magnetic 
geometries within the conceptual framework that is 
developed here. Nevertheless, these complications will be 
avoided in the present exposition.) 

The prescribed external current density J = j, Vq5 is 
assumed to be purely toroidal; for definiteness, it may 
be realized as a finite collection of elementary coils, 
j& = zZ,6(r - R,) 6(z - Z,) located at (R,, Z,) carrying 
currents II. As usual, poloidal current coils are assumed 
to be located outside the perfectly conducting shell 
(see [7,24]). 

The general constraints of motion governed by axisym- 
metric ideal MHD involve functionals of the form 

C,:=j r -‘f@(Y) dr dz, 
a 

C,,, := f rp”” Q(Y) dr dz, 
R 

(2.22) 
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where @J(S) is any real function (with suitable regularity 
properties) in the interval o0 < s < +co. The significance of 
these functionals derives from the fact that they can be 
evolved in time without explicit reference to the velocity 
field V; specifically, 

dc, o dc, 
-= dt , F= nrQ@(Y)drdz. 

s (2.23) 

The verification of these identities is straightforward using 
Eqs. (2.14), (2.16), and (2.17). Of course, they represent the 
conservation of toroidal flux and mass within the magnetic 
surfaces, as can be seen by applying the formula 

S,am(Y)drdz=~+~~f(~)do~jr,.ladrdz - 
a0 

+ @(G) j a dr dz, 
IY>,Jol 

valid for any integrable function a = a(r, z), to represent the 
functionals C, and C, in terms of the toroidal flux and 
mass within each magnetic surface, namely, 

5 r-‘f dr dz, 
{Y>al 

I rP 1/Y dr dz (0 2 00). 
{~~~I 

(2.24) 

(The term “mass” is used in a loose sense, since the density 
P ‘ly = eSIYPp also involves the entropy.) 

In addition to the above constraints of motion within the 
plasma, the total (plasma plus vacuum) toroidal flux, 

F,:=Snr-‘fdrdz, (2.25) 

is conserved. In order to verify the identity 

(2.26) 

it is necessary to recall that the Maxwell equation 

aB 
:+VxE=O 
at 

holds in D, while the tangential components of E vanish on 
aD. Then (2.26) follows immediately by applying Stokes’ 
formula. 

3. VARIATIONAL FORMULATION OF 
RELAXED PROBLEMS 

The slow evolution equations for an axisymmetric 
plasma-vacuum system as given in Section 2 are degenerate 
in the sense that they do not include the convective 
derivative DV/Dt. This set of equations is therefore under- 
determined with respect to the evolution of the velocity field 
V. Nevertheless, the velocity component I” normal to the 
magnetic surfaces { Y = o} in the plasma, can be determined 
from the poloidal flux convection equation (2.16); namely, 
VI can be defined by 

VI = - IVYJ - 1 Yg-' 

thus making (2.16) valid pointwise everywhere that the nor- 
mal n = IVYI -’ VY is itself defined. The conservation laws 
(2.17) and (2.14) for toroidal flux and mass, on the other 
hand, have ambiguous meaning since each of them also 
involves the tangential velocity to the magnetic surfaces. A 
natural way to rectify this degeneracy is to relax the require- 
ment that these equations hold at every point in the plasma 
to the weaker requirement that toroidal flux and mass be 
conserved within every magnetic surface. By relaxing these 
equations in such a manner we achieve two goals. First, we 
obtain a self-consistent formulation of the slow evolution 
problem (involving only V’ = n . V). Second, we arrive at a 
quasi-equilibrium problem which at each instant of time has 
a natural variational structure. 

In order to formulate the above mentioned relaxation we 
introduce the functionals 

F,=[ar-‘f(Y-o), drdz, 

M,=j rp”Y(Y-a)+ drdz 
62 

parameterized by the flux variable (T which runs through the 
range of Y in the plasma. Of course, these functionals are 
just the constraints of motion C, and C,+,, corresponding to 
the particular choice a(s) = (s - G) + := max(s - (T, 0). 
Moreover, they are identical with (minus) the a-anti- 
derivatives of the classical quantities displayed in (2.24). In 
terms of these functionals we can express the relaxation of 
the conservation laws (2.17) and (2.14) respectively, as the 
equations 

dF b- - 0, d”, - 
dt s dt R 

rQ(Y-a), drdz. (3.3) 

Also, because of the free-boundary, we impose Eq. (2.26) on 
the functional F, defined in (2.25). The precise formulation 
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of the relaxed slow evolution problem can now be stated: 
the plasma region is governed by the (equilibrium) force 
balance equations (2.19), the magnetic surface convection 
equation (2.16), the integral conservation laws (3.3), and 
the equation of state (2.7); the vacuum region is governed 
by the field equations (2.18); and, the fixed and free 
boundary conditions are given by (2.20) and (2.21). 

The above relaxation from pointwise conservation laws 
to integral constraints of motion can be interpreted as 
averaging over magnetic surfaces [ 10, 131. Letting 

(a) :=s,,_,, j$gdl 
denote the surface average (apart from a normalization) of 
a function a = a(r, z), we claim that (3.3) is equivalent to 

; (r-y-) =o, ; <P"')= <Q>, 

where the surface averaged quantities involved depend 
upon 0 and t. Indeed, these equations are identical with the 
evolution equations for Fc and M, after applying a2/a(r2 to 
each of the identities in (3.3). Consequently, the relaxed 
slow evolution problem is identical with the surface 
averaged Grad-Hogan equations. We prefer, however, to 
replace the concept of surface averaging by the concept of 
integral constraints of motion in order to expose the natural 
variational structure of the problem. 

The physical justification for averaging over magnetic 
surfaces can be summarized as follows. The plasma region is 
foliated by toroidal magnetic surfaces on which the helical 
field lines wind so that, at least generically, each field line is 
dense in its associated surface. Therefore, transport pro- 
cesses (see [ 141) beyond the scope of the governing equa- 
tions under consideration effectively enforce the postulated 
averaging in reality. On this basis the relaxed (averaged) 
equations constitute a realistic model of adiabatically slow 
evolution. On the same grounds we may assume that the 
external heating source is a surface quantity Q = Q( Y, t), 
although this simplification is not strictly necessary. 

We now proceed to give a variational method of solving 
the relaxed slow evolution problem. The prescribed data for 
this problem consist of the source Q(u, t) and the flux 
function t&r, z, t) for the poloidal field induced by the 
external current density jb(r, z, t) according to 

L$ = rJd in a, $=o on asz. (3.4) 

The total flux function Y can be split into the sum 
!P= $ + $, where @ denotes the flux function induced by 
current density supported in the plasma region. In what 

follows, II/ is used as an unknown rather than Y, since I,$ is 
prescribed. The total potential energy 

+ rm1f2 + rp/(y - 1)] dr dz (3.5) 

serves as the objective functional; the constraint functionals 
are supplied by F,, F,, M, defined above, which now can be 
considered as functionals of (+,f, p) depending explicitly on 
t through t)(t). At every instant of time t we let ($*,f*, p*) 
denote the solution of the constrained minimization 
problem 

E(J/,f, p) + min subject to 

F,(f) = Fd 7 F,(W t) = F,*, (3.6) 

MA@> P; t) = W 

corresponding to instantaneous constraint values F$ , F,*, 
M,* . In doing so we assume that such a minimizer is unique 
(at least locally along a trajectory in the solution space), 
even though a general uniqueness theorem is not available. 
Since the validity of this assumption can be verified com- 
putationally, we can consider the formal solution map 

(F,*,F,*,M,*)-*(IC/*,f*,p*) (3.7) 

to be well defined for the purposes of discussion. With this 
map in hand we are able to pose the relaxed slow evolution 
problem as the family of equations: 

df’o*=o df’: o -= 
dt ’ dt ’ 

!!!%= 
(3.8) 

s dt R 
rQ(t,b* + t,h, t)(t)* + I,& - a), dr dz, 

where (r runs through the range o0 < cr < max($ + I$), which 
is invariant in time. In principle, the slowly evolving solu- 
tion trajectory (t,b*(t),f*(t),p*(t)) can be advanced in time 
according to these equations. The fact that at each instant 
of time t such a solution formally satisfies the MHD 
equilibrium equations is a consequence of the variational 
principle of Kruskal and Kulsrud [20]. 

The instantaneous variational problem (3.6) that deter- 
mines (t)*(t), f*(t), p*(t)) is novel from the standpoint of 
optimization theory in the sense that it involves minimiza- 
tion subject to continuously infinite families of nonlinear and 
nonlocal constraints. Consequently, the calculation of the 
variational equations (a Lagrange multiplier rule) satisfied 
by a solution is not straightforward. Indeed, no rigorous 
derivation of the Grad-Shafranov equation (2.19) is 
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available in this context, because the regularity properties of 
the resulting profile functions for f and p (the multipliers) 
are not known [6, 22, 231. In principle, an adiabatic evolu- 
tion can result in very singular current density even though 
it is initialized by a smooth equilibrium and driven by 
smooth and slowly varying sources and external fields. In 
other words, the (instantaneous) formal solution map (3.7) 
does not have established continuity properties with respect 
to appropriate choices of function spaces for its domain and 
range. For this reason, we prefer to formulate a relaxed 
version of the above quasi-equilibrium problem in 
which the classical families of constraints are replaced by 
corresponding finite families by a simple interpolation 
procedure. In this way, we arrive at a problem that is 
tractable analytically and computationally. 

As a technical convenience in all that follows we mak_e the 
substitution 

If2 
(3.9) 

and we define the functional 

G,(~/,g):=j rg2’y(++$-c)+ drdz (3.10) 
n 

which (up to a constant factor) is identical with the func- 
tional M,,(@, p). Then we can pose the variational problem 
governing the solution at every instant of time in the form 

subject to 
I;,(tkf) = F: 3 

(0 2 4 

with the energy functional 

E(#,f;g)=fj [r-’ IVt,b12+r-1f2+rg2]drdz. (3.11) 
R 

We introduce the new unknown g so that the objective func- 
tional E is expressed as a quadratic form, since this structure 
is needed later in the development of the iterative algorithm. 

We now construct the multiconstrained variational 
problem that we call (P,), whose constraints constitute a 
natural discretization of those in (P,). Let (TV < crl < g2 < 
f.. can<crn+l = +cc be a partition of the range of the flux 
function Y = I,I? + I,& in the plasma with oO = min Y and 
cr,, = max ul; and let Aai := c,. - ei- , . We define “basis 
functions” relative to this partition by 

1 
r 
ai+ -- A- (s--6)+ do, (3.12) 

or, explicitly, 

0, SiOj-1 
(s--i- 1)2/2Aaiy aj-1dsSaj 

CD&) = s - (s - 0~)~/2Aa~+ 1 - (a,- 1 + a,)/2, 

aj<s<oj+l 

(0i+l-ci-1)/23 s>aj+l. 

These functions are precisely the s-antiderivatives of the 
usual finite element functions @i (8); namely, for 1 < i < 
n - 1, @J is piecewise-linear on oi- I < 5 < gi+ r, zero else- 
where, and @: (ai) = 1, while @I, is linear on on- I <s < on, 
constant on s > gn, and @;(a,) = 1. In terms of these basis 
functions we define the constraint functionals 

Fi(@,fl=[Q r -‘fGi(tJ + 6) dr dz 

Gi(+, g) = S, rg 2’V@i(~ + 6) dr dz. 

(3.13) 

(3.14) 

Now we can pose the relaxed variational problem 

E(vkf, g) -, min subject to 

V’,) F&f) = J’,* 7 Fi’i(ll/,.f )=Fi”, 
GA+, g) = G? (i = 1, . ..) n), 

whose constraint values are derived from those in (P,) 
according to 

and similarly for CT. 
The variational equations associated with (P,) are readily 

derived. Let F’ denote the functional (or Frtchet) derivative 
of any differentiable functional F in the triple ($, f, g). The 
standard Lagrange multiplier rule [ 15,253 states that a 
solution ($,f, g) of (P,) satisfies 

E’($,f, g) = n,J’b(f) + f JiJ’i (Il/,..f) 
i=l 

+ PiGIt@, g) (3.15) 

for some multipliers &, Ai, pi E R. (Technically, these multi- 
pliers exist and are uniquely determined by the minimizer, 
provided the constraint derivatives are linearly inde- 
pendent. This condition can be verified in the present 
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context.) An explicit calculation of the expressions entering 
into (3.15) yields the triple of equations 

LII/=fL=@‘($+$)+r2g2/YpLW($+$) (3.16) 

f=n,+nqrC/+$) (3.17) 

g = (2/y) gc2--ql .@(II/ + $), (3.18) 

where the abbreviated notation 1. @ = C;= r LiQi is used. 
These equations are just a version of the Grad-Shafranov 
equation (2.19). Indeed, it is immediate that (3.17) defines 
the prolilef = f( Y); and it follows after some manipulation 
that (3.18) defines the profile p = p(Y) = (y - 1) g( Y)2/2. 
Thus, the (unknown) profile functions are determined by 
the multipliers Jo, Li, pi according to 

f(Y)=l,+il.@(Y), 

p(y)Jy-1) 2 T[;‘.Q(Y)~y-li 
(3.19) 

In view of these relations, Eqs. (3.16k(3.18) are seen to be 
equivalent to the classical equilibrium equations (2.6) and 
(2.9) in the plasma and vacuum regions. Moreover, the 
free-boundary conditions on Y = { Y = co} are also valid, 
because the continuity (and differentiability) of V$, f, and g 
are implied by these equations, by virtue of standard elliptic 
regularity theory. In summary, any minimizer ($,f, g) for 
(P,) produces an exact solution of the complete equilibrium 
problem for the plasma-vacuum system. 

The variational problem (P,) can be viewed as a 
particular formulation of the general variational principle 
for ideal magnetohydrodynamic equilibria due to Woltjer 
[27,28]. In his principle the constraints, which are derived 
as invariants of the associated evolution equations, take 
exactly the same form as our functionals C, and C,. 
A derivation of the associated variational equations is 
included in his work. Our presentation differs from his, 
however, in the choice of specific basic functions ai, which 
are tailored to numerical analysis, and in the complete treat- 
ment of the plasma-vacuum free-boundary problem for a 
toroidal confinement device. The development we give in 
this section also connects the Kruskal-Kulsrud principle 
with the Woltjer principle by means of the idea that the con- 
straints for (P,), which are parametrized by the magnetic 
surface variable 6, are naturally discretized into the con- 
straints for (P,), which are parametrized by the index i. In 
a sense this discretization of constraints is achieved by 
averaging the a-parametrized constraints over subintervals 
of the partition { ci}. Therefore, as the class of admissible 
triples ($,f, g) is enlarged in going from (P,) to (P,), the 
solutions of (P,) are themselves exact solutions of the 
governing equilibrium equations. Their associated profile 
functions f(Y) and p(Y), however, are special in that 

they are constructed from linear combinations of the basis 
functions Di( Y), i = 1, . . . . n. As n tends to infinity, these 
interpolating profile functions tend to the general profile 
functions appropriate to (P,), and so a natural approxima- 
tion of the surface-averaged quasi-equilibrium problem is 
obtained. 

The relaxed slow evolution problem corresponding to 
(P,) is simply a (2n + 1 )-dimensional system of ordinary 
differential equations. Introducing the vector of constraint 
values 

x* := (Fd, Fi*, Mi*)E (W2n+l, 

this system is expressible as 

dX* 
- = A(X*, t), dt 

(3.20) 

where A has the components (i = 1, . . . . n) 

A,=O, Ai=O 

1 
(3.21) 

An+i= rQ(ll/*+$,t)Qi($*+$)drdz. 
a 

Here, ($*, f *, g*) denotes the minimizer for (P,) corre- 
sponding to the constraint values X*, which is assumed 
to be uniquely determined by X*, so the evaluation of A 
requires the solution of (P,). Thus, our relaxed (volume- 
averaged) version of the nondissipative Grad-Hogan 
equations is rigorously formulated, and the dynamical 
system (3.20) furnishes a complete and consistent model of 
the slow evolution of plasma-vacuum system due to heating 
sources and/or varying external fields. 

It remains to discuss the initial conditions for the system 
(3.20). In most realistic situations, the external sources or 
currents that drive the slow evolution are applied to a 
known equilibrium configuration of interest. For instance, 
this is the case when either plasma heating on adiabatic 
compression is initiated. Moreover, slow evolution can be 
expected only if the initial configuration is almost in equi- 
librium. We shall assume, therefore, that the initial con- 
straint values X*(O) are derived from a given equilibrium 
solution. 

4. ITERATIVE ALGORITHM 

We now construct an iterative procedure that solves the 
variational problem (P,) formulated in the preceding 
section. In this section we develop the abstract form of the 
algorithm and derive its general convergence properties. In 
the succeeding section we state the algorithm in its concrete 
form and discuss its implementation for toroidal equi- 
librium computations. 



MHD PROBLEMS: EQUILIBRIUM AND EVOLUTION 277 

A preliminary transformation of (P,) into an equivalent 
variational problem is required before the algorithm given 
below can be applied. For this reason we consider the 
modified variational problem 

i 

E(ll/,f, g) -, min subject to 

m ~OWJ-, = e, Fi(+9f)=F*, 

Gi(lC/, g)  = G? (i = 1, . ..) n), 

where the total toroidal flux constraint is replaced by a 
constraint imposed on the functional 

FO(+~S)=FOU)- i oiFi(+9f) (4.1) 
i=l 

defined by some constants oi > 0. This minor change in(P,) 
is necessary because the structure of the algorithm rests on 
the property that the (Lagrange) multipliers corresponding 
to a minimizer are strictly positive. However, under typical 
circumstances, the multipliers for (P,) are expected to have 
the signs 1, > 0, Izi < 0, ,ui > 0. Indeed, apart from the sign of 
A,, which is set by the direction of the toroidal magnetic 
field in the vacuum, the signs of these multipliers can be 
inferred from the monotonicity of the profile functions in 
(3.19 bnamely, from the inequalities f’( Y) < 0, p’( Y) > 0, 
which are anticipated on physical grounds. This is so by vir- 
tue of the choice of the basis functions Qi as antiderivatives 
of the finite element functions, combined with the formulas 

f’(Y)=I*@‘(Y), 

Now, if x0, xi, ii,. denote the multipliers for (P,), then they 
are related to those for (P,) by 

1, = x0, li = xi - &Oi, pi = jii (i = 1, . . . . n), (4.3) 

as is immediate from the comparison of the variational 
equations for (P,) with their analogues for (P,). Conse- 
quently, the constants oi, . . . . o, can always be fixed large 
enough (depending upon the solution) to ensure that all of 
the multipliers for (P,) are strictly positive. Throughout the 
remainder of the section we assume that this is done. 

For the sake of simplicity of exposition we let u = ($, f, g) 
denote the unknown triple, and we write the variational 
problem (P,) in the abstract form 

E(U) + min subject to Fi(u) = F,f” (i = 0, . . . . 2n). 

(4.4) 

In an obvious change of notation, the constraint family 

for (P,) is now rewritten with the functionals F,, . . . . F,, 
replacing FO, F,, . . . . F,, G 1, . . . . G,, and with corresponding 
constraint values F,*, . . . . F;n. The admissible triple u 
belongs to the space H= HA(Q) x L*(Q) x L*(Q), for which 
a norm II.11 H is given by 

l14&=~Q ClWl’+f’+s’1 drdz. 

Let ( ., . ) denote the standard L*-pairing in the sense of 
distribution theory-namely, 

wherefl,f2, gl, g2EL2(Q), and $,EH%Q), 492~Hp’(Q) 
or vice versa. In terms of this pairing the objective functional 
E, which is differentiable at any u E H, has the derivative 

E’(u) = (r-‘L11/, r-‘J rg) EH-‘(f2) x L*(Q) x L*(Q), 

meaning that E(u+~?u)=E(u)+ (E’(u), &)+0(116ull,) 
as 6u tends to zero in H. Similar remarks pertain to the con- 
straint functionals Fi. The variational equations satisfied by 
a minimizer u E H, interpreted in this sense, are simply 

E’(u) = F &F;(u) (4.5) 
j=O 

with positive multipliers A,, . . . . A*,,, which are identified with 
the multipliers in (P,). 

Convexity properties of the objective and constraint func- 
tionals are fundamental to the construction of the iterative 
algorithm. The objective functional E is both strictly conuex 
and quadratic; it admits the useful expansion 

E(o) = E(u) + (E’(u), u-u) + E(u - u), (4.6) 

in which the positive second-order term is explicit. On the 
other hand, the constraint functionals Fi are not convex. 
Therefore, the algorithm invokes a certain “convexification” 
of them, and requires that constants cli 2 0 be fixed such that 

Fi + aiE is convex (i = 0, . . . . 2n). (4.7) 

Clearly, ai can be chosen large enough to guarantee this 
property. With ao, . . . . aZn fixed appropriately, the algorithm 
can now be stated. 

Let u” E H satisfying Fi(uo) 2 F,? (i = 0, . . . . 2n) be an 
(otherwise arbitrary) initialization. The iterative sequence 
uk, k = 0, 1, . . . . is defined inductively by solving the 
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following quadratic programming subproblem at the iterative 
step: u = uk + i solves 

E(U) + min subject to 

Fi(uk) + (F;(uk) + aiE’(uk), u - uk) 2 FT (4.8) 

(i = 0, . . . . 2n). 

This subproblem is a convex optimization problem having 
linear inequality constraints. Therefore, it has a unique 
solution which is characterized by the corresponding 
Kuhn-Tucker conditions (the analogue of the Lagrange 
multiplier rule) [15,25]; namely, uk+’ E H and its 
associated Kuhn-Tucker (multiplier) vector gk’ ’ E lRzn+ ’ 
are uniquely determined by 

E’(uk+‘)= 5 ~;+l[F;(~k)+ajE’(~k)] (4.9) 
j=O 

Cg”>O (4.10) 

Fi(uk)+ (F’(uk)+~iE’(Uk), Uk+l-Uk)-F: 20 (4.11) 

<f+‘[Fi(uk)+ (F;(uk) 

+a,E’(uk), Uk+l -uk)-FT]=O. (4.12) 

An explicit description of the algorithm defined by (4.8) 
can be given in terms of the so-called dual subproblem 
[15,25]. Let a matrix (a:) and a vector (cf) be defined by 
the iterate uk according to 

ai= (FI(uk)+aiE’(uk), M-‘[Fj(uk)+ajE’(uk)]) (4.13) 

cf = FT - Fi(uk) + (FI(uk) + ai,?‘( uk), (4.14) 

where M= E” denotes the (unbounded) symmetric linear 
operator that corresponds to the positive definite quadratic 
form 

E(u) = f(Mu, u) (u E H). (4.15) 

The subproblem in t that is dual to (4.8) is then expressible 
as 

f F aEgicj- F cfti+min over ti>O. (4.16) 
i, j = 0 i=O 

Now the algorithm can be described in a form that leads 
directly to a concrete numerical implementation. The 
iterative step is defined by 

uk+’ = z <jk+lM-l[Fjl(uk) +ajE’(uk)], (4.17) 
j=O 

where gk” is the (unique) solution of (4.16). The 

equivalence of (4.16), (4.17) with (4.8) is standard. 
variational inequalities satisfied by gk’ ’ are simply 

The 

Noting that (4.17) coincides with (4.9) by virtue of the iden- 
tity E’(u) = Mu, and substituting this expression for uk+ * 
into the complementarity conditions (4.10~(4.12), it is 
evident that (4.18) is just a restatement of those conditions. 

We now turn to a discussion of the convergence proper- 
ties of the algorithm. These special properties dictate the 
structure of the algorithm, and hence justify the particular 
construction described above. It is essential to explain them 
in conjunction with the definition of the iterative algorithm. 

In short, the algorithm defined in (4.8) possesses the 
monotonicity properties: 

E(uk+ ‘) < E(uk), (4.19) 

Fi(uk) > F,f+ (i = 0, . . . . 2n) (4.20) 

for every k and any admissible initialization u”. An inductive 
argument on k proves this claim. Suppose that Fi ( uk) 3 FT. 
Then uk is admissible in the subproblem (4.8) which defines 
uk+ ‘, and hence (4.19) follows. Since Fi + aiE is convex by 
hypothesis, there holds 

Fi(uk+‘) + aiE(uk+‘) 

> Fi(uk) + aiE(uk) 

+ (FI(uk) + aiE’(uk), uk+’ - uk) 

> F,f” + a,E(uk), (4.21) 

invoking the linear inequality constraints in (4.8). 
Now (4.21) and (4.19) combine to give Fi(uk+‘)> FjC, 
completing the induction. 

A stronger version of the monotonicity property (4.19) is 
true; namely, 

E(u~-U’+~)<E(U~)-E(U~+~), (4.22) 

for every k. This inequality can be derived from the 
Kuhn-Tucker conditions (4.9)-(4.12), along with the 
expansion (4.6). The required calculation is 

E(uk) - E(uk+ ‘) 

= (E’(uk+‘), ~~-u~+l)+E(u~-u~+~) 

=c tT+l(Fj(uk)+ajE’(uk), uk-uk+‘) 

+E(uk-uk+‘) 

3~~;+‘[Fj(uk)-FT]+E(uk-uk+‘) 

>E(uk-uk+‘). (4.23) 
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From (4.22) both the monotonic convergence of the 
objective functional values, 

E(uk) 1 E* (say) as k+co, 

and the convergence property of the iterative sequence, 

llUk-Uk+‘lln-+O as k+co, (4.24) 

follow. Without a rate for this convergence it cannot be 
asserted that the entire sequence {u”} converges to a single 
limit point u* E H. Nevertheless, the bound E(uk) < E(u’) 
ensures at least that every subsequence has a furher sub- 
sequence converging weakly in iY. Now, if u* denotes such 
a weak limit point, then a straightforward argument (which 
is omitted here) furnishes the corresponding weak _con- 
vergence of the Kuhn-Tucker conditions; namely, the 
associated subsequence of multiplier vectors $ tends to a 
limit <*, and the pair a*, e* satisfies 

<E’(u*), U) = 5 t; (F;(u*) + ajE’(u*), u) 
j=o 

for all u E H, (4.25) 

<i*>O (4.26) 

F,(u*)-F*>O (4.27) 

5: [Fi(u*) - Fi*] = 0. (4.28) 

But (4.25) is just the weak form of the governing variational 
equations (4.5) when the multipliers 1: associated with u* 
are defined by 

ni*=<,*/(l-a.<*). (4.29) 

Thus, u* is a critical point (a minimum point) for the varia- 
tional problem (4.4) whenever (a) <” > 0 for all i, and (b) 
a .t* < 1. As remarked above, the choice of o guarantees 
that LF > 0 for all i, which in view of condition (b) is the 
same as condition (a). Hence the complementarity condi- 
tions (4.28) enforce the equality constraints in (4.4) at the 
solution u*. It suffices then to verify condition (b). This can 
be inferred from the identity 

(l-a.t*)(E’(u*),u*)=xt,?(Fj(u*),u*), 

which results from taking v = u* in (4.25). Under mild 
conditions, (E’(u*), u* ) > 0 and (F,? (u*), u* ) > 0, and 
so condition (b) follows. 

The convergence properties demonstrated above refer to 
subsequences of the iterative sequence {u”}. An alternative 
statement of these makes use of the distance in the space H 
between a point 11~ H and the set S* E H of solutions 

581/m6/2-6 

(critical points) of the variational problem (4.4). It can be 
shown that as k + co 

distH(Uk, S*) := inf{ 11~~ - uI[ H : u E S*} --+ 0. 

This generalized form of the convergence statement is 
required because of the possibility that solutions of (4.4) are 
not unique. As the proof is mainly of technical interest, we 
omit it here. The reader is referred to our earlier work [6] 
for detailed convergence proofs in the case of a prototype 
problem for (P,). 

In implemented computations such as those documented 
in Section 6 the iterative sequence is observed to converge to 
a single limit point with a linear rate of convergence. This 
convergence behavior is expected whenever the algorithm is 
applied to compute a (local) energy minimizing solution 
subject to the given flux and mass constraints. Indeed, the 
convergence rate can be related to the stability of the 
equilibrium to axisymmetric perturbations. 

5. NUMERICAL IMPLEMENTATION 

The concrete form of the iterative algorithm defined in 
Section 4 is presented next. For this purpose we first record 
in component form some of the expressions used in the 
abstract statement of the algorithm. For the sake of 
simplicity we choose y = 2 here and in the computations 
discussed in Section 6. The objective functional E given by 
(4.15) has the derivative 

Mu = E’(u) = (r-l&b, r-If, rg). (5.1) 

The constraint functionals F,, . . . . FZ,,, which are identified 
with Fo’,, F,, . . . . F,,, G,, . . . . G,, have the derivatives 

FL(u) = (r-tf?&,($ + $), r-‘~o($ + $), 0) 

F;(u) = (r-@jj($ + $), r-‘Qi($ + $), 0) (5.2) 

FL+i(u)=(rg@i(++$h 0, r@i(++$)) 

for i = 1, . . . . n. The basis function b,(s) := 1 -0. Q(s) is 
included so that the functional F. may be expressed in the 
form 

~ow=J-Q r-‘f$,($ + $) dr dz. 

Some functionals derived from these expressions are 
introduced for convenience, 

P,(u) := (F;(u), M-‘F;(u)) (5.3) 

Qi(u) := <F:(u), u>, (5.4) 
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for i = 0, . . . . 2n. According to (5.1), the terms involving M - ’ 
are calculated to be 

hf - 'G(u) = two, Gow + a, 0) 

M-'F,'(U)= (Wi, @i(J/ + $), 0) (5.5) 

M-1FL+i(u)=(wn+i9 O, @i($ + $))7 

where w,,, . . . . w2n are determined by solving the linear 
elliptic boundary value problems: 

in Sz, 

on af2 
Lwj=f@;(+ + 6) 

wi=o 

in 0, 

on as (5.6) 

Lw .+i’r2g@:(+ + $1 in Sz, 

wn+i- -0 on asz. 

The iterative step that generates uk+ ’ = (tik+‘,fk+‘, 
gk+ ‘) from uk = (ek,fk, gk) can be described as the three 
stage process: 

Stage 1. Find the solutions wt, . . . . w& of (5.6) corre- 
sponding to (tik,fk, gk). 

Stage 2. Evaluate the integrals E(uk), Fi(uk), Pii( 
Qi(uk) (i, j = 0, . . . . 2n); then assemble the coefficients 

a;= Pii + aiQj(uk) 

+ ajQj(uk) + 2aiajE(uk) 

cr = Fir - Fi(uk) + Q,(u”) + 2aiE(uk), 

(5.7) 

(5.8) 

and solve the dual quadratic programming subproblem 
(4.16) for gk+‘. 

Stage 3. Set 

e k+l= F <f+‘wj+(a.(k+l)tjk 
j=O 

f”” = 5;+‘so(ll/k+ 4) 

(5.9) 

+ k <~+l@j($k+$)+(a.<k+l)fk (5.10) 
j=l 

g k+l= f <tlf@j(+k+$)+(a.Sk+l)gk. (5.11) 
j=l 

Stage 1 involves the solution of 2n + 1 Dirichlet problems 
in Sz. These linear problems can be treated by any standard 
numerical method, the structure of the algorithm being 
independent of the particular discretization used. 

Stage 2 constructs and then solves the dual subproblem 

for gk+ l. The numerical integrations required to compute 
the coefficients given in (5.7) and (5.8) can be accomplished 
by any numerical quadrature appropriate to the discretiza- 
tion used. The determination of gk’ ‘, a convex quadratic 
minimization problem with simple inequality constraints, 
can be achieved by a variety of known optimization 
methods. In the event that none of the constraints holds as 
an equality, the multiplier vector gk” is just the solution of 
the linear -6.382421 0  TD 3  Tr 0  TD 3  Tr re62i6e20.194  Tw (gk” ) Tj0  Tr 27.TD 3  Tr 08Tr -300.335 -12065r14nv8n0954  Tw (of ) Tj16c 0.-7 Tr 08Tr of the of 

of by 
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,xi is roughly h of its estimated value and that nearby 
choices (within a factor of 3) result in nearly the same 
performance. On the other hand, our tests indicate that the 
algorithm performs poorly when the parameters tli are 
chosen too small or too large. 

Finally, we briefly describe a solver for the standard equi- 
librium problem with prescribed toroidal current profile 
and total toroidal current, which we use to initialize a slow 
(adiabatic) evolution computation. This especially simple 
method of solution, which is also based on a variational 
formulation, is fully discussed in another paper [S], where 
the analogous hydrodynamic problems are treated. 

The equilibrium problem for the plasma-vacuum system 
is to be solved with a given total toroidal current I> 0 and 
given profile functions in the Grad-Shafranov equation 
(2.19) having the form * 

the prescribed functions&(s) and p&) are assumed to be 
smooth for s>,O and to satisfy fO(0) >O, fb(0) =0 and 
p,(O) = 0, p;(O) = 0. The problem is then to find 9 and co 
such that 

L* = rj(r, * + J - 00) in a, 

I(/=0 on 80, 
(5.12) 

s j(r, i,b + $ - a,) dr dz = Z, 
D 

(5.13) 

where the toroidal current density in the plasma is written 
as 

In this problem (in contrast to (P,)), the flux constant c0 
is an unknown and determines the location of the 
plasma-vacuum interface { $ + $ = c,} in response to the 
total current constraint. 

The iterative algorithm appropriate to this problem can 
be stated as follows: given ijk, define ijk’ ’ and at+ 1 by 

W k+l=rj(r, t+!fk+$-ct+l) in Q, 
(5.14) 

* k+l,o on ac2 

s nAr9 +” + 9 -uE+‘)drdz=Z. (5.15) 

This iterative step is easily implemented by first finding 
ok+ i to satisfy (5.15) and then solving the linear elliptic 
boundary value problem (5.14) for I(lk+ ‘. 

In the computed examples considered below, the 
Grad-Shafranov profiles are taken to have the form 

f32=a,+a,s”=1/(K+ l), 

po = a,s;+‘/(Jc + l), j= (al/r + u2r) s:. 

The parameters a0 > 0, a, -C 0, u2 > 0, and JC > 0 are chosen 
to obtain solutions having acceptable physical properties. 

6. COMPUTED EXAMPLES 

In this section we present the results of some computa- 
tions made with the general algorithm described above. 
For the sake of brevity, we limit our discussion to two 
representative cases, each of which is chosen to exhibit an 
aspect of the performance of the algorithm. In the first case, 
we generate a family of flux-conserving equilibria with 
increasing plasma pressure by imposing a heating source. 
In the second case, we generate a family of adiabatically 
compressed equilibria in an external poloidal field by 
varying the toroidal coil currents. 

In each case, the cross-sectional domain Q is taken to 
be a rectangle, even though our general method is not 
restricted to this simple geometry. The operator L in 52 is 
discretized by a standard finite difference method, and the 
linear elliptic boundary-value problems constituting Stage 1 
of the algorithm are treated with a corresponding fast 
Poisson solver. All of the integrals required in Stage 2 of the 
algorithm are computed using appropriate quadrature 
formulas consistent with the discretization. The dual 
quadratic programming subproblem for tk + ’ is solved by a 
standard routine based on an active set method [9]. This 
method, which employs the direct linear solution of reduced 
systems, is precise and efficient, and it exploits some 
special feature of the algorithm. The explicit formulas for 
(ek+r, fk+', gk+‘) which form Stage 3 of the algorithm are 
evaluated at each grid node. The iterations are terminated 
when the criteria 

I;;:+‘-I;; F;+‘-F,f+ Gf+‘-GT 
F$ ’ F,? ’ G,? 

are achieved, where Ft+‘, Ff+l, G:+’ denote the 
constraints evaluated at (i~?~“, f”“, gk+ ‘). Among the 
examples given below (which are representative) between 10 
and 50 iterations are required to satisfy these criteria. 

The first family of computed equilibria illustrates the 
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evolution from low-j? to high-/?, the volume-averaged fi 
being defined by 

/!l:=jpdV j-fB2dV. 
I 

The computational domain 52 = (0.5 <r < 1.5, IzI < 0.5} is 
discretized with a grid having 101 x 101 nodes. There are no 
external coils (6 = 0), so the magnetic geometry is deter- 
mined simply by the boundary condition $ = 0 on the con- 
ducting shell an. The quasi-equilibrium problem governed 
by (P,) is considered with n = 5. The family is initialized by 
a solution of (5.12), (5.13) corresponding to 

a, = 50, a,= -5, a,=50, K= 1, Z=3.5. 

The constraint values furnished by this solution are 

F. = 10.982, co = 0.287, 

F, = 0.195, F2 = 0.130, F3 =0.0793, 
F,=O.O368, F,=O.O0585, (6.1) 

G, = 0.0513, G2 = 0.0428, G3 = 0.0309, 

G, = 0.0164, G, = 0.00284. 

These constraints correspond to equal flux increments 
da, = (max @ - 0,)/5. With these values defining X*(O), the 
vector of constraint values X*(t) is evolved in slow time t 
according to (3.20) with a heating source given by 

Q = 40($ - co)‘, . 

The solution of (3.20) is advanced with a time step A r = 0.05 
using the standard fourth-order Runge-Kutta scheme; at 
each intermediate step the function A(X) is evaluated by 
solving (Ps) with constraints X 

Table I records the computed results for this adiabatic 

TABLE I 

Some Computed Quantities for the Slow 
Evolution Heating Problem 

Time Gf G: G: Gt G: B I max* 

0.0 0.0513 0.0428 0.0309 0.0164 0.00284 0.0108 3.50 0.803 
0.1 0.0613 0.0520 0.0382 0.0207 0.00365 0.0154 3.57 0.804 
0.2 0.0718 0.0616 0.0461 0.0254 0.00452 0.0207 3.71 0.804 
0.3 0.0823 0.0717 0.0543 0.0303 0.00546 0.0268 3.86 0.804 
0.4 0.0942 0.0824 0.0630 0.0356 0.00648 0.0338 4.03 0.803 
0.5 0.106 0.0936 0.0723 0.0413 0.00759 0.0415 4.22 0.803 
0.6 0.119 0.105 0.0821 0.0473 0.00879 0.0508 4.43 0.803 
0.1 0.132 0.118 0.0925 0.0539 0.0101 0.0597 4.65 0.803 
0.8 0.146 0.131 0.104 0.0609 0.0115 0.0700 4.90 0.803 
0.9 0.161 0.145 0.115 0.0685 0.0131 0.0812 5.17 0.802 
1.0 0.177 0.160 0.128 0.0767 0.0147 0.0933 5.46 0.801 

evolution on the time interval 0 < t < 1. It lists the mass con- 
straints GT which increase with pressure, but omits the flux 
constraints F,?' which are constant; it also lists the corre- 
sponding values of /I, Z (total toroidal plasma current), and 
max + (poloidal flux at the magnetic axis). Figure 1 displays 
the magnetic surface plots corresponding to three of the 
instantaneous equilibria at t = 0.0, 0.5, 1.0. Figure 2 shows 
the normalized mid-line (z = 0) profiles off, p, and J4 for 
those equilibria. 

This adiabatic evolution exhibits the behavior expected of 
flux-conserving plasma heating. Over the given time inter- 
val, /I increases from 1.1% to 9.3 % and correspondingly z 
increases from 3.5 to 5.5, while the magnetic surfaces shift 
outward and the toroidal current density profile becomes 
peaked on the outward side of the plasma. In these respects 
this family of solutions exhibits the expected behavior of 
flux-conserving tokamak equilibria [3,4,26]. For the pur- 
pose of comparison with other treatments, however, it is 
important to note that these results pertain to the relaxed 
problem with free-boundary formulated in Section 3, and as 
such are new. 

The tabulation of max I(/ in Table I demonstrates the 
degree to which flux is conserved by this family. While flux- 
conservation is imposed only in the volume-averaged sense 
that Fi (i=O, . . . . 5) are constant along the family, the varia- 
tion of pointwise diagnostic max $ is remarkably small. 
Similar results are observed over a wide range of conditions 

r 

gJ 0 0 

FIG. 1. Magnetic surface plots in poloidal cross section for the first 
family of equilibria; the plasma-vacuum interface is marked by some 
zeroes. 
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whenever (P,) is solved with n > 3. On the other hand, 
max + can vary greatly when n = 1. This evidence 
demonstrates that exact (infinitely constrained) flux-conser- 
vation can be effectively approximated by a few integral 
constraints (say, n = 5). Since the computational effort of 
solving (P,) grows rapidly with n, this property is very 
significant for practical implementations. 

The irregularity of the current density profiles in Fig. 2 
merits some comment since this effect is not commonly 
evidenced by simulations of flux-conserving equilibria 
under axisymmetry (which excludes the phenomena 
associated with rational magnetic surfaces and the forma- 
tion of islands). The oscillatory behavior of these profiles is 
intrinsic to the solutions of the multiconstrained variational 
problem (P,) and is observed over a wide range of condi- 
tions. It cannot be ascribed to spurious numerical error, 
since the spatial grid is sufficiently line to resolve the solu- 
tion of (P,) accurately, provided that it is not large. It can, 
however, be taken as an indication of a lack of regularity of 
the solutions as n tends to infinity. We are led to suggest on 
this basis that the infinitely constrained problem (P,) has 
only weak solutions, and that as n tends to infinity the solu- 
tions of (P,), which are smooth for each finite 12, converge 
to a solution of (P,) only in a weak sense. Such a conjecture 
is consistent with the present lack of knowledge about the 
optimal regularity of weak solutions of the flux-conserving 
equilibrium problem and its prototypes [6, 8, 22, 231. 

.- 

1.5 

FIG. 2. Normalized profiles in the z = 0 mid-line for n = 5;J p, and J4 

are indicated by bold, dashed, and dotted graphs, respectively. 

! 

-1 

I 
FIG. 3. Normalized profiles in the z = 0 mid-line for n = lO;x p, and 

J6 are indicated by bold, dashed, and dotted graphs, respectively. 

Indeed, there is no known estimate (in an appropriate 
Sobolev norm) of the current density that is independent of 
n, apart from the obvious fact that the induced magnetic 
field has bounded energy. Consequently, the existence of 
singularities such as current sheets cannot be excluded at 
present. This possibility provides some further justification 
for the relaxed variational formulation that we adopt, in the 
sense that at least we are assured that the solutions we 
endeavor to compute have established analytical properties. 

In order to examine the regularity question for (P,) (or 
its analogous GDE) we are compelled to consider the 
behavior of solutions of (P,) as n is increased. To this end, 
we solve the same quasi-equilibrium problem as above, but 
with n = 10, to check quantitatively the effect of relining the 
discretization of the constraint families. In Fig. 3 we display 
in the normalized mid-line (z = 0) profiles corresponding to 
the solutions of (P,,) at the same times and for the same 
given data as those in Fig. 2. The current density profiles in 
this refined case continue to show some distinct irregularity 
(steep gradients and rapid oscillations), but the average 
behavior of the profiles appears to be more acceptable. 
These general features persist when the same problem 
is solved again with n = 15. Without being completely 
conclusive, these numerical tests support the conjecture that 
the regularity properties of infinitely constrained flux-con- 
serving equilibria are delicate, while they also demonstrate 
that the average (large-scale) properties of the equilibria are 



284 TURKINGTON ET AL. 

not sensitive to the (small-scale) irregularities. Moreover, 
these results appear to suggest that the singularities (if they 
exist) are located at or near the free-boundary and that the 
irregularities of the current profile in the plasma are related 
to singular behavior at the plasma-vacuum interface. 

The second family of computed equilibria illustrates the 
change in shape of the magnetic surfaces during compres- 
sion due to varying the external poloidal field. The com- 
putational domain Q = (2.5 < r < 3.5, lzl < 1.5} is used with 
a grid having 101 x 101 nodes. The external field is induced 
by two elementary coils located at (R,, 2,) = (2.7,O) and 
(Rz, 2,) = (3.3,0), carrying currents I, = Z2 < 0. The flux 
function $ for this field is the sum of two Green functions for 
L corresponding to the coil locations (R,, ZI); their singular 
parts can be evaluated precisely by an explicit formula (in 
terms of elliptic integrals), and their regular parts can then 
be computed numerically. The problem is posed with n = 3 
and equal flux increments da, derived from a solution of 
(5.12), (5.13) with given parameters 

ao=5, a, = -0.5, az=5, Ic= 1, I()= 1.5. 

The constraint values fixed by this solution are 

F, = 3.184, u. = 0.260 

F, = 0.0502, F2 = 0.0225, F3 = 0.00356, (6.2) 

G, = 0.0934, G2 = 0.0543, G3 = 0.00999. 

A family of six solutions of (P3) is then generated by suc- 
cessively increasing the external coil currents I, = Zz, while 
maintaining all of these constraint values. We refer to the 
resulting solutions as equilibria (2.1~(2.6). Table II records 
the prescribed values of I, and Z2, and the corresponding 
values of 8, Z, and max Y. Figure 4 shows the magnetic 
surface plots for these equilibria. 

The most striking feature evidenced by this family is the 
large z-shift of the plasma from equilibrium (2.5) to (2.6), 
and the associated loss of z-symmetry. This behavior can be 
interpreted as the result of a two-dimensional (axisym- 
metric) instability that occurs at a critically compressed 

TABLE II 

Some Computed Quantities for the Adiabatic 
Compression Problem 

Equilibrium I, I2 B I max Y 

(2.1) -0.200 -0.200 0.0424 1.48 0.715 

(2.2) -0.260 -0.260 0.0423 1.56 0.715 

(2.3) -0.338 -0.338 0.0424 1.64 0.714 
(2.4) - 0.439 -0.439 0.0423 1.76 0.712 

(2.5) -0.571 -0.571 0.0419 1.90 0.705 

(2.6) - 0.742 -0.742 0.0437 1.51 0.718 

Equilibrium-2.1 

Equilibrium-2.4 

Equilibrium-2.2 Equilibrium-23 

EqW.5 Eqw.6 

FIG. 4. Magnetic surface plots in poloidal cross section for the second 
family of equilibria; the plasma-vacuum interface is marked by some 
zeroes. 

equilibrium, whereupon an energetically more favorable 
equilibrium is found by the (energy-decreasing) algorithm. 
By symmetry, the z-reflection of equilibrium (2.6) has 
identical properties, and so under these circumstances the 
algorithm may converge to either equilibrium (2.6) or its 
reflection, depending only on the small numerical errors 
that initiate a departure from z-symmetry. Consequently, 
many iterations may be needed to develop such a shift, if no 
other perturbations are added. It is noteworthy that max Y 
shows only a small variation in the course of this large 
change in the magnetic surfaces { Y = c}, even though only 
three (volume-averaged) flux constraints are imposed. 

It is possible to devise other geometries and external coil 
configurations which will exhibit bifurcation of the plasma 
region rather than the above z-shift. The variational for- 
mulation (P,) remains unchanged through such a bifurca- 
tion, even though the interior of magnetic surfaces { $ > cr } 
may not be connected. (The integrals defining the con- 
straints then extend over all of the components of these 
sets.) Thus, the above algorithm can be applied without any 
modifications to situations where the topology of the 
magnetic surfaces changes. In these situations our formula- 
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tion and algorithm appear to have a distinct advantage over 
other methods, which encounter difficulties if the magnetic 
surfaces are not regularly nested. 

ACKNOWLEDGMENTS 

We are pleased to acknowledge the use of the computations and graphics 
facility of The Center for Geometry, Analysis, Numerics, and Graphics 
(GANG) at The University of Massachusetts. In particular, we thank 
Edward Thayer for assistance with the graphics. 

REFERENCES 

1. F. Bauer, 0. Betancourt, and P. Garabedian, A Computational Method 
in Plasma Physics (Springer-Verlag, Berlin/Heidelberg/New York, 
1978). - 

2. J. Blum, Numerical Simulation and Optimal Control in Plasma Physics, 
with Applicafions to Tokamaks (WiIey/Gauthiers-Villars, Chichester/ 
New York, 1989). 

3. J. F. Clarke and D. J. Sigmar, Phys. Rev. Lett. 38, 70 (1977). 

4. R. A. Dory and Y.-K. M. Peng, Nucl. Fus. 17,21 (1977). 

5. A. Eydeland and B. Turkington, J. Comput. Phys. 78, 194 (1988). 

6. A. Eydeland, J. Spruck, and B. Turkington, Math. Comput. 55, 509 
(1990). 

7. J. P. Freidberg, Ideal Magnetohydrodynamics (Plenum, New York, 
1987). 

8. P. R. Garabedian, SIAM Rev. 31, 542 (1989). 

9. 

10. 
11. 

12. 

13. 

14. 

15. 

16. 

17. 

18. 

19. 

20. 

21. 

22. 

23. 

24. 

25. 

26. 

27. 

28. 

P. Gill, W. Murray, and M. Wright, Practical Optimization (Academic 
Press, London, 1981). 

H. Grad, Proceedings, Symposia in Applied Math. 21, 1977, p. 3. 

H. Grad, Courant Institute of Mathematical Sciences Report MF-93, 
New York University, 1978 (unpublished). 

H. Grad and J. Hogan, Phys. Reo. Lett. 24, 1337 (1970). 

H. Grad, P. N. Hu, and D. C. Stevens, Proc. Nat. Acad. Sci. 72, 3789 
(1975). 

F. L. Hinton and R. D. Hazeltine, Rev. Modern Phys. 48, 239 (1976). 

A. D. Ioffe and V. M. Tihomirov, Theory of Extremal Problems 
(Elsevier North-Holland, New York, 1979). 

S. C. Jardin, in Multiple Time Scales, edited by J. Brackbill and 
B. Cohen (Academic Press, New York, 1985). 

S. C. Jardin et al., J. Comput. Phys. 66,481 (1986). 

J. L. Johnson et al., J. Comput. Phys. 32,212 (1979). 

M. Kress, J. Comput. Phys. 76, 201 (1988). 

M. D. Kruskal and R. M. Kulsrud, Phys. Fluids 1, 265 (1958). 

K. Lackner, Comput. Phys. Commun. 12, 33 (1976). 

P. Laurence and E. Stredulinsky, Commun. Pure Appl. Math. 38, 333 
(1985). 

P. Laurence and E. Stredulinsky, Indiana U. Math. J. 38, 377 (1989). 

A. E. Lifschitz, Magnetohydrodynamics and Spectral Theory (Kluwer 


